感觉强度定律的数学表达

时间:2023-12-13 11:19:02

这种决定感觉强度的方法(通过逐渐把刺激从弱提高到强以产生一个最小可觉差),在实际应用方面会变得十分烦琐。直接的观察将更为简洁。因此,我们对于这个问题本身,提出是否可以发现某个更为简洁的方法,以便让我们只需通过一步就可以从1/50克达到1克,而无须像我们上面所做的那样,运用不少于14个中间步骤。这个问题也许可用肯定来回答,因为对存在于感觉和刺激之间的依赖关系的考虑会使我们信服。

感觉强度定律的数学表达

感觉和刺激在量值上是相互独立的,两者都能用数字来表示。代表感觉的数值随着刺激数值的增加而增加。在这一情形中,最简单的关系将是很明了的:与刺激相对应的是数字1,2,3等等,也存在用那些数字来表示的感觉。于是,我们可以说,感觉强度是与刺激强度直接成正比的。然而,这种简单的关系难以把握,刺激增加要比感觉增加更为迅速。当然,在一个数字系列比另一个数字系列增长得更快方面,现在有无数种形式可以用来表示这些数值之间的依存关系,例如,如果我们将每一个数自身相乘,这样我们便从数字系列1,2,3,4…,获得另一个数列为1,4,9,16…,众所周知,第一个数列是第二个数列的平方根;后者为前者的平方,或者为第一个数列的二次幂。所以,如果用这两列数字来表示刺激和感觉之间关系,我们应该说,感觉相等于刺激的平方根。一个相似的数列(它与这个数列的差别仅仅是以更快的速度增加)可以通过把每个数字乘以本身两倍或者三倍来获得,于是达到了它本身的三次幂或者四次幂。如果这些数列中的任何一个数列表示刺激增加的速率,我们就可以说,感觉等于刺激的三次方根或者四次方根。但是,感觉强度的增加既非平方根,也非立方根,或者是刺激强度的其他任何方根。从这一事实中可以很清楚地看到,刺激增加与其引起的确定的感觉强度的增加是整个刺激量值的一个常数比。因此,既然有关的刺激增加总是保持相等,那么代表刺激的有关数字的增加也必须是一个常数。这在所引证的数列中并不存在这样的事实。例如,在数列1,4,9,16中,数字的增加应依次为3,5,7,而这些增加是与1,4,9有关的;但是,由此得到的比例为3/1,5/4,7/9,它们并不相等。如果这个例子事实上遵循着感觉的定律,我们必须获得3/1,6/2,12/4等这样的分数,或者是其他一些特定的常数结果。但是,既不是二次幂也不是三次幂或者其他任何幂次方给出了这样的数列。

另一方面,存在着另一种应用非常普遍的数字关系,它精确地对应于感觉和刺激之间的关系。

如果我们稍稍注意一下一个普通的对数表,我们就可以发现表中的数字是以两个纵列排列的;其中一列包含普通数字,另一列为其相应的对数值。我们立即可以看到,后者的增加比普通数字的增加要缓慢得多,如同感觉增加的量值比刺激增加的量值缓慢得多一样。对于数字1,它排列在一边,我们发现作为它的对数的0是排列在另一边的。10的对数为1,100的对数为2,等等。这里,对于数字和它们的对数来说,我们看到这两个系列以十分相异的方式增加。如果我们观察得更仔细些,我们就会发现比外在的相似性更大的相似性。1,10,100,1000的对数为0,1,2,3,这些数字的增加与它们的量值之间存在怎样的关系呢?当1增加到10时,增加了9;当10增加到100时,增加了90;当100增加到1000时,增加了900。因此,它们的增加比率为9/1、90/10、900/100。这些比率是相等的,例如,都等于9。现在,这个式子可以表示感觉增加的规律。感觉是以相同的量值增加的,而刺激的增加是这样的:它的每一次增加都与这一特定的整个刺激量值之间存在一个常数关系;对数以相等的量值增加,而此时它们数值的增加是这样的:它的每一次增加与相对应的量值之间总是存在相同的比率关系。所以,我们可以说,当刺激以其数字关系增加时,感觉是以对数关系增加的;或者,更为简洁地说(我们可以用某种确定的数字来表示任何一种刺激量值),感觉作为刺激的对数而增加。

对数表在心理学认识到它们的必要性前很久就已被人们自然地使用了。事实上,感觉对刺激的依存关系的表达仅仅是一种十分简单的关系的表达,它频繁地出现在量值依存性的表达上。例如,对数0,1,2,3以相同量1每一个区别于相邻值,而对应的数1,10,100,1000以同样的倍数(即每一例值的10倍)彼此不同。即使这样获得的求对数的唯一法则,过程也十分繁杂。幸好,事情是十分简单的。如果我们把一个数自乘到其全部可能次幂,我们也就能从这个数得到另一组数值。于是101=10,102=100,103=1000。很清楚,通过这种将一个数自乘的方法,我们可以获得任何一组数值。如果我们把

作为10的幂,我们会得到一组落在10和100之间的数值。如果我们把作为10的幂,所得到的数据在100和1000之间。而且,如果我们把所有可能的分数作为幂,那么我们将会获得10和100,100和1000等等之间所有可能的数字。为了获得小于10的数字,我们不能乘以数字10,而是把它自除若干次。正如数学家所说,我们必须计算它的负数次幂。这样10-1=1/10,10-2=1/100等等。而在101和10-1之间存在100或101-1,也就是1。如果我们用这些负幂次方中的分数作幂,那就可以得到这些分数所能得到的一切结果;从幂0到1之间得到的所有数值,都落入1和10之间。因此,只要计算10这个数的所有次幂,我们就可获得每一个可能的数值。现在,如果我们把这些幂0,1,2,3与相应的数字1,10,100,1000相比较,我们可以看到后者以相同的比率彼此依存,就像对数依存于它们的真数一样。当以乘方产生这些数以相等的倍数增加时,前者就以相同的增量增加。因此,这些幂并不指代其他任何东西,而是指代我们通过乘方所得数值的对数。现在,我们可以把感觉定律的公式表述如下:感觉依存于其刺激就像指数依存于乘方产生的这些数一样。